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ABSTRACT: Characterization of neuronal cell growth provides key information about
the development of neural pathways during embryogenesis as well as their regeneration
following postnatal nerve injury. However, very active cell types like growing neurons
are difficult to track in detail because their motion is complex and cellular features
have a tendency to move out of the focal plane or occlude one another. Due to these
difficulties, characterization of neuronal growth dynamics has been less quantitative
than desired. To address this problem, we developed a method for the automated
motion analysis of neuronal growth based on image analysis and shape correspondence
techniques. This method increases the rate at which we can obtain dynamic data by
at least an order of magnitude. We focus specifically on the growth cone, a specialized,
cell-like structure at the growing neurite tip whose behavior is believed to be a key
determinant of neuronal growth. q 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1413–
1422, 1997

Key words: nerve growth dynamics; nerve regeneration; growth cone; computer
vision; image analysis

INTRODUCTION dendrites) from the neuronal cell body, a process
regulated by the growth cone.2 The growth cone
is a motile expansion at the neurite tip (see Fig.The ability to predict and control neuronal growth
1) that displays a dynamic morphology, changingin both biological and biosynthetic environments
shape rapidly and apparently randomly in bothrepresents a critical step in the tissue engineering
time and space. While the dynamics of this contin-of neural systems. Specific applications include
ual and complex remodeling are believed to holdthe improved repair of injured nerves, the devel-
many clues to the underlying mechanisms of neu-opment of in vitro neural networks, and the con-
rite growth, they have proven quite difficult tostruction of bioartificial devices.1 A lack of quanti-
track. In addition, the small size of growth conetative data has, however, made this an elusive
features (ranging down to less than 1 micron) andgoal. Neuronal growth occurs in vivo and in vitro
the difficulties associated with staining live neu-by the guided extension of neurites (axons and
rons leads to the use of high-resolution, phase con-
trast microscopy for most experimental observa-
tions of growth cone behavior and, consequently,Correspondence to: H. M. Buettner
images characterized by noise and low contrast.* Present address: Clinical and Appraisal Science, Uni-

lever Research U.S., 45 River Road, Edgewater, NJ 07020 In this article, we present a method that greatly
Contract grant sponsor: Whitaker Foundation facilitates the tracking and analysis of neuronalContract grant sponsor: National Science Foundation

growth cone morphology from such images. Be-Contract grant number: BCS-9210540
q 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/111413-10 cause this represents a particularly challenging
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1414 HAWKINS, BUETTNER, AND DUNN

Figure 2 Example of conformal stretching. The two
curves have the same centroid, and angles between
points are preserved, but the degree of stretching in
the x- and y -directions are different.

tion of the growth cone can be characterized as
nonrigid, since the central region deforms and the
filopodia extend, bend, retract, and eventually dis-
appear. Three basic methods can be applied to
analyze nonrigid motion:Figure 1 Growth cone from chick DRG neuron grow-

ing on a laminin-coated glass coverslip. Labeled modal-
1. Differential geometry techniques, in whichities are the central region and filopodia.

the contour of an object is assumed to un-
dergo conformal motion (see Fig. 2). Con-
formal motion preserves angles betweenproblem in the analysis of cell motility, our
curves, but not distances between points.7–9

method should be suitable for characterizing mo-
2. Overconstrained global descriptors, whichtion by many other cell types as well.

employ statistics or previous changes in aFor purposes of analysis, the growth cone is
contour to predict future changes.10–12

often divided conceptually into two main regions
of interest (Fig. 1):

1. The central region, which is relatively
rounded and typically exhibits lamellipod-
ial veils at its periphery.

2. The filopodia, which are longer, fingerlike
structures projecting from the periphery of
the lamellipodial region.

Both of these regions are important to neurite
growth. Experiments in which the central region
is deprived of filopodia by pharmacological treat-
ment show that growth can continue in their ab-
sence but appears undirected,3–5 suggesting that
the central region may be primarily responsible
for neurite extension with the filopodia playing a
major role in growth cone guidance. In addition, Figure 3 Outline of the growth cone in Figure 1,
pharmacological treatment leading to collapse of showing its contour as a series of connected straight
the central region causes the neurite to retract.6 line segments with points labeled in a clockwise man-

ner.From an image analysis perspective, the mo-
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3. Energy-minimizing active contours, where EXPERIMENTAL
the contour of the object is defined as the Neuronal Cell Culture and Video Microscopy
region of minimal energy. The energy of

Measurements were made on chick dorsal rootthe contour is defined as the sum of image
ganglion (DRG) neurons obtained at embryoniccontrast, image intensity, and smoothness
day 7–8. The ganglia were placed on glass cov-constraints between contour points.13–16

erslips coated with laminin and incubated over-These techniques have been applied for
night at 377C. Immediately prior to observation,segmenting pseudopods17 and dendritic
the coverslips were affixed to microscope slides toprocesses.18

form a sealed culture chamber. Individual neurites
were then identified and tracked using time-lapse

The motion of the growth cone is difficult to video microscopy. Cultures were filmed at a con-
track using differential geometry techniques for stant temperature (377C) on the incubated stage of
two significant reasons: First, growth cone motion a Leitz Labovert inverted microscope. Microscopy
cannot be classified as a constant stretching or was performed using a 1001 oil immersion phase
deformation or other deterministic kinds of be- contrast objective, a 1.61 projection lens, and a
havior. In addition, differential geometry tech- Dage MTI pasecon video camera. A Macintosh IIci
niques can be impractical when the images are equipped with a RasterOps 24STV frame grabber
very noisy or when the intensity of the object does was used to grab digital video sequences at a rate
not vary significantly from the background of the of 0.25 frames/s, which approached the lower limit
image, both of which occur here. on the time interval in which significant movement

Overconstrained techniques could not be ap- could be detected. The frames were stored on a 1.3
plied since there are no current statistics avail- Gb hard drive prior to analysis and then archived
able to describe the motion of the growth cone on digital audiotape.
features. In addition, features along the growth

Two-dimensional Motion Analysis of the Growthcone contour disappear as the filopodia retract
Coneand as the axon moves across the coverslip. For

these reasons, our motion analysis is based on Time-dependent characteristics of growth cone
morphology were analyzed by first generatingactive contour techniques.

Figure 4 Axon, lamellipodium, filopodium, tip, initiation, and branch points. The
filopodia are the spiky structures projecting from the central region. The bounding box
of the central region, which represents the maximum extension parallel and perpendic-
ular to the axon, is marked by the dotted line.
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two-dimensional outlines of all the growth cone derivatives ns (s ) and nss (s ) , where s is the nor-
malized arc length, defined as the ratio of the dis-images in a video sequence. In this manner, only

the lamellipodia and filopodia at the tip of the tance along the contour divided by the total con-
tour length. Algorithms for both manual and com-structure were measured. The axon position was

recorded as the location where the central region puter-automated outlining, as well as subsequent
tracking of morphological features within a se-first began to spread outward from the axon.

These contours were produced either (1) by dis- quence of outlines, were written in the C program-
ming language and run on a Sun Sparcstation.playing the individual images of a sequence on a

Sun Sparcstation running X-Windows and outlin- Contours were derived automatically using ac-
tive contour techniques. These techniques inter-ing the growth cone images manually as a series

of connected straight-line segments (semiauto- pret the sequence of outlines as a two-dimensional
active contour, or snake, composed of elastic com-matic method) or (2) by deriving the contour auto-

matically (fully automatic method). In each case, ponents—strings, which permit creases or folds,
and rods, which are resistant to bending and tendthe contour was denoted as a set of N discrete

points, n(xi , yi ) , where i Å 1, 2, rrr N (see Fig. to smooth the contour. The snake ‘‘locks on’’ to a
contour in an image when its energy is minimized,3). This approximates a continuous contour de-

noted by n(s ) Å [x (s ) , y (s ) ] , with first and second as determined by image forces, smoothness con-

Figure 5 Outlines of actual chick DRG growth cone contours in a time series: (a)
time Å 0 min; (b) time Å 6.5 min; (c) time Å 13 min; (d) time Å 20 min. The lack of
a conserved structure between contours illustrates that the growth cone does not exhibit
conformal stretching/deformation.
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straints, and user-defined external constraints. Extraction and Labeling for Neurite Tracking),
for tracking morphological features of the motileFor example, movement of one of the points to-

ward salient features in the image, such as dark growth cone from a series of growth cone contours.
Using SEaLNeT, the points in each contour arepatches, will result in lowering the energy of the

contour (for a detailed description, see the Ap- automatically assigned feature labels based on
the curvature of the contour at the given point;pendix).

Sequences of chick DRG growth cone motion these features are then tracked and analyzed
without user intervention for the sequence of im-used for this analysis were processed either semi-

automatically or fully automatically by computer ages.
The assigned point labels are dependent on aand then verified manually for comparison. The

user was prompted to segment the contours man- local neighborhood of other points. The curvature,
ki , of a point, i , is defined byually or automatically using the deformable con-

tour models described above.19,20 In the fully auto-
matic case, feature points were added as the con- ki Å

dxi

ds
d2yi

ds2 0
dyi

ds
d2xi

ds2 (1)
tour expanded during filopodial or lamellipodial
extension and removed during filopodial retrac-

The following set of rules is employed in identi-tion or lamellipodial contraction (by a computer-
fying feature labels (see Fig. 4):driven algorithm). We used a discrete, multistage

decision process for extracting the contours of the
1. The axon point (point at which the axongrowth cone in the fully automatic case. The elas-

shaft meets the growth cone) is the firstticity, or pulling force exerted between points, was
point along the contour.determined by the position of the point along the

2. All points with very high positive (convexcontour, or point label, as described in the follow-
relative to the centroid) curvature are tem-ing section.19,20

porarily labeled as tip points.
3. Initiation points for these temporary

RESULTS points are then labeled based on the follow-
ing criteria:

Automatic Labeling and Tracking

The primary result of this work is a motion analy- • Relatively high negative (concave relative to
the centroid) curvature.sis system which we refer to as SEaLNeT (Surface

Figure 6 Time series of total filopodial length.
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1418 HAWKINS, BUETTNER, AND DUNN

Figure 7 Time series of total filopodial number.

• Distance between initiation points for a cor- tween tip and initiation point vs. distance
responding tip point of a given filopodium is between initiation points for a given filo-
small. podium) are computed. All points that were

previously labeled as tip and initiation• The lengths between the initiation points
points that do not have at least a length-and tip for a given filopodium are approxi-
to-width ratio of 2 : 1 are reset as pointsmately equal.
along the central region.

5. All points between initiation and tip points4. The length-to-width ratios (distance be-

Figure 8 Area of the whole growth cone (central region and filopodia) compared to
the area of the central region alone.
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2. Total length of all filopodia in a given
frame.

3. Area of the central region and whole
growth cone.

4. Angles of initiation and tip points and
lengths for individual filopodia.

5. Bounding box or total extension of the cen-
tral region.

6. Variance, standard deviation, skew, and
kurtosis in x- and y -directions.

7. Axon and centroid angles and positions.

A time series of the total length and number of
Figure 9 Summary of lifespans of first six newly ini- the filopodia in a given frame, the areas of the
tiating filopodia (length in mm vs. time). whole growth cone and the central region, and the

lengths of the first six newly initiating filopodia
are shown in Figures 6–9. The summary of the

that have very high negative curvature are position and angle of the axon as it moved across
labeled as branch points (where two sepa- the coverslip are shown in Figure 10(a) and (b),
rate filopodia have the same initiation respectively.
point). Fully automatic processing reduced the total

6. Central region points are labeled as all re- analysis time by a factor of 30 compared to manual
maining points between the axon and initi- processing; semiautomatic reduced the total analy-
ation point or two initiation points. sis time by a factor of 10 when compared to manual

7. Filopodium points are labeled as all re- processing. Manual processing can be completed at
maining points between an initiation and a rate of about five growth cones/day, requiring
tip point, an initiation and branch point, more than 1 month to acquire even a minimal data
or a branch and tip point. set for estimating dynamic characteristics of

growth cone morphology. For sequences with less
Several contours of a growth cone from a repre- dynamic filopodial activity, the accuracy of auto-

sentative video sequence are shown in Figure 5. matic processing was greater than 95%. However,
We performed semiautomatic motion analysis on accuracy dropped significantly as behavior became
numerous sequences to date, typically consisting more dynamic, making the fully automatic method
of 200–1000 images. Computations are completed useful only in specific cases. The choice of the ap-
at a rate of several hundred frames per hour on propriate method (fully or semiautomatic) de-
a Sun Sparcstation 2, leading to an order of mag- pended on the experimental setup. The fully auto-
nitude improvement in the overall rate of analysis matic method could always be applied to track the
when compared to nonautomated methods pre- central region and axon in a homogeneous environ-
viously described.21 Accuracy of the analysis was ment, but the semiautomatic method was applied
evaluated in terms of three key types of points: the majority of the time when other contours (other
the centroid and the filopodial tip and initiation axons or substrate borders) were present.
points. Labeling and measurement of all other
features in a contour depend upon the correct
identification of these three basic features. Agree- DISCUSSION
ment with visual identification of the same fea-
ture points by an expert was typically greater We have developed a method for computing quan-
than 93%, with discrepancies occurring only in titative information about the dynamic morphol-
the case of blurred images or complex morpholog- ogy of the growth cone. This system can be used
ies in which features were quite ambiguous. in one of two ways:

Once the points along the growth cone contours
are labeled, SEaLNeT computes the following 1. Semiautomatic operation—Manual con-
quantitative information (see Fig. 4): tour extraction with automatic feature la-

beling and motion tracking.
2. Fully automatic operation—Automatic con-1. Total number of filopodia in a given frame.
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1420 HAWKINS, BUETTNER, AND DUNN

Figure 10 (a) Growth cone trajectory. The growth cone axon moved from the top
right corner to the bottom left corner over a 30 min series. (b) Time series of axon
angle.

tour extraction, feature labeling, and mo- matic method is accurate in all cases while provid-
tion tracking. ing a significant time savings, albeit less than the

fully automatic method.
One long-term goal is to modify our image anal-The fully automatic operation tremendously in-

ysis system to permit the user to watch the con-creases the rate at which dynamic morphological
tour extraction process and to move any incorrectdata can be obtained on the complex structure
points. The contour of the previous frame will beof the growth cone. However, it cannot be used

reliably for highly motile behavior. The semiauto- superimposed over the growth cone in the current
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frame and then relax around the growth cone in The sum of external constraint and image force
energy was represented bythe current frame (as described by the energy-

minimizing deformable contours above). The user
will then correct for errors in the overall contour Eext Å Eimage / Econ (A.5)
by moving certain points or regions with the
mouse. In addition, the user can view previously and the partial derivatives were represented as
outlined frames with or without the growth cone
outlines to aid in the determination of the overall

fx ( i ) Å ÌEext

Ìxi
(A.6)contour. In this way, motion tracking will be

highly accurate and user interaction will be mini-
mized.

fy ( i ) Å ÌEext

Ìyi
(A.7)Future studies will include tracking the growth

cone across different substrates and in the pres-
ence of other axons. Studies of the growth cone The discrete representation of internal forces,
under varying environmental conditions are cru- Eint , for point i was given as
cial to assess the role of each environmental factor
and to aid in the overall process of nerve repair

ai (ni 0 ni01) 0 ai/1(ni/1 0 ni )and guidance. Quantitative analysis of many sep-
arate recordings, such as the one described here, / bi01(ni02 0 2ni01 / ni )
will be used as a base line for future studies where 0 2bi (ni01 0 2ni / ni/1)motion is measured under varying, inhomoge-
neous environments. / bi/1(ni 0 2ni/1 / ni/2) (A.8)

The energy of the entire system of points can be
found by forming a system of equations for allAPPENDIX
points along the contour:

The energy of the closed contour (snake) of s ,
Ax / fx (x , y ) Å 0 (A.9)E*snake , can be written as follows:
Ay Å fy (x , y ) Å 0 (A.10)

E*snake Å min *
1

0
Esnake[n(s ) ] ds

where A is a matrix formed by rows of elasticity
constraints described for each point in terms of a

Å min *
1

0
{Eint[n(s ) ] / Eimage[n(s ) ]

(A.1)

and b, described above. These equations can be
solved iteratively with

/ Econ[n(s ) ] } ds (A.2)
xt Å (A / gI )01[xt01 0 fx (xt01 , yt01)] (A.11)

where the energy describing the overall smooth-
yt Å (A / gI )01[yt01 0 fy (xt01 , yt01)] (A.12)ness of contour s is given by

where g denotes step size. Terzopoulos and Szel-
iski16 proposed adding an inertial term to the ex-Eint Å

a(s )Éns (s )É2 / b(s )Énss (s )É2

2
(A.3)

ternal energy to prevent the snake from de-
forming too much when the image sequence be-

Eint , Eimage , and Econ represent the internal comes distorted or out of focus. This term is useful
smoothness energy, image force energy, and ex- for tracking motion in objects where small defor-
ternal constraint energy of the contour, respec- mations are anticipated. However, this term was
tively. The first-order weight, a, constrains the not used for our calculations since shape changes
contour to be like a membrane, and the second- could be very large and constraining our contour
order term, b, constrains the contour to be more model to permit only small deformations resulted
like a thin plate. Image energy forces were repre- in inaccurate tracking.
sented here as

This research was supported by grants from the Whi-
taker Foundation and NSF BCS-9210540 to H.M.B.Eimage Å vedgeEedge / vintensityEintensity (A.4)
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